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Introduction

Pfister forms play a prominent role in the algebraic theory of quadratic forms. On the
other hand, involutions on central simple algebras share many properties with quadratic
forms. Hence it is natural to look for an analog of the notion of Pfister form in the
framework of algebras with involution.

The aim of the present paper is to propose such a notion. An n–fold Pfister involution
(or Pfister involution, for short) will be by definition a central simple algebra with an or-
thogonal involution which is a tensor product of n quaternion algebras with involution. We
show that if n = 4, then after passing to any splitting field of the algebra, the involution is
induced by a Pfister form. For n ≤ 3, this was already proved by D. Tao. We also compute
cohomological invariants of 2-fold Pfister involutions, and raise some open questions.

1. Definitions and notation

Let F be a field of characteristic 6= 2. Let D be a central simple algebra over F . We
say that an involution σ : D → D is of the first kind if its restriction to F is the identity.
After extension to a splitting field of D, any involution of the first kind is induced by a
symmetric or by a skew-symmetric form. We say that the involution is of the orthogonal
type in the first case, and of the symplectic type in the second case.

Definition. Let (D,σ) be a central simple algebra endowed with an involution of the first
kind. We say that (D,σ) is an n–fold Pfister involution if σ is of the orthogonal type, and
if there exist quaternion algebras H1,. . . ,Hn, and involutions σi : Hi → Hi such that

(D,σ) ' (H1, σ1)⊗ ...⊗ (Hn, σn).

Let Fs be a separable closure of F , and set Hn(F ) = Hn(Gal(Fs/F ),Z/2Z).

2. Statement of results and open questions

Let (D,σ) be a central simple algebra with an orthogonal involution of the first kind.
Let K be a splitting field of D. Then after tensoring with K, the involution is induced by a
quadratic form q defined over K. It is natural to ask whether (D,σ) is a Pfister involution
if and only if q is similar to a Pfister form. This is proved by Tao [5] for algebras of degree
≤ 8 (cf. [4], [2], p.150).
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In the present paper, we show that for a 4–fold Pfister involution the associated quad-
ratic form is a 4–fold Pfister form (see §5, th. 2). It would be interesting to know whether
the converse also holds : this is still an open question.

It is also natural to try to define n–dimensional cohomological invariants of n–fold
Pfister involutions. More precisely, suppose that (D,σ) is an n–fold Pfister involution. Let
XD be the Brauer–Severi variety ofD and qF (XD) the associated quadratic form. For n ≤ 4,
we know that qF (XD) is an n–fold Pfister form. Let En(D) = Ker(Hn(F )→ Hn(F (XD)).
Does there exist an invariant en(D,σ) ∈ Hn(F )/En(D) with the property that en(qF (XD))
is equal to the image of en(D,σ) in Hn(F (XD)) ? In §4, we define such an invariant for
2–fold Pfister involutions.

3. A lemma

The following lemma will be used in §4 and §5 :

Lemma 1. Let τ be an orthogonal involution on D. Let φτ : D ⊗F D → EndF (D) be the
isomorphism induced by φτ (v, w)(x) = vxτ(w). Let u ∈ D∗ be such that τ(u) = u. Then
the involution τ ⊗ Int(u)oτ transports under φτ to σq, where σq is the adjoint involution

on EndF (D) induced by the quadratic form q : D → F given by q(x) = Trd(xu−1τ(x)).

Proof. See [2], II.1, page 133.

4. Invariants of 2-fold Pfister involutions

Let (H1, τ1) and (H2, τ2) be two quaternion algebras with involution, and set (D, τ) =
(H1, τ1) ⊗ (H2, τ2). Suppose that τ is an orthogonal involution. By [1] we know that
disc(τ) = 1 and that (D, τ) = (H3, τ3) ⊗ (H4, τ4), where H3, H4 are quaternion algebras,
and τ3, τ4 are their canonical involutions. We have C(D, τ) = H3×H4 and the factors are
unique up to switch.

Let XD be the Severi–Brauer variety of D, and set

E2(D) = Ker(H2(F )→ H2(F (XD)).

Then E2(D) is the subgroup of H2(F ) generated by the class of D. Let us denote by [H3]
the class of H3 in H2(F )/E2(D). Then [H3] is an invariant of (D, τ).

If D is split, then H3 ' H4, and (D, τ) = (H3, τ3)⊗ (H4, τ4) ' (End(H3), τq), where
q : H3 → F is the quadratic form q(x) = Trd(xτ3(x)) = 2Nrd(x), cf. Lemma 1. Thus
q ' 2NH3

, where NH3
is the norm form of the quaternion algebra H3. This implies that

e2(q) ∈ H2(F ) is the class of H3. Set e2(D, τ) = [H3] ∈ H2(F )/E(D). This is an invariant
of the algebra with involution (D, τ), and it coincides with e2(q) if D 'M4(F ) and τ = τq.
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Theorem 1. Let (D, τ) = (H1, Int(u)oτ1) ⊗ (H2, Int(v)oτ2) where the Hi are quaternion

algebras, τi the canonical involution of Hi and u ∈ H1, v ∈ H2 satisfy τ1(u) = −u,
τ2(v) = −v. Then e2(D, τ) = [H1] + (−Nrd(u)) ∪ (−Nrd(v)) in H2(F )/E(D).

Proof. Suppose that H1 ⊗H2 is split. We may assume that H1 = H2. Then we have

(D, τ) = (H1, Int(u)oτ1)⊗ (H1, Int(θ)oInt(u)oτ1),

where θ = vu−1. Then τ = τq, where q : H1 → F is the quadratic form

q(x) = Trd(xθ−1Int(u)oτ1(x)) = Trd(xuv−1uτ1(x)u
−1),

cf. lemma 1. Let us define bq : H1 × H1 → F by bq(x, y) = Trd(xuv−1uτ1(y)u
−1). Set

λ = Trd(uv−1).

If λ = 0, then q(1) = Trd(uv−1) = 0. Thus q is isotropic and has discriminant 1,
hence it is hyperbolic. As λ = 0, the elements 1, u, v, uv form a quaternionic basis for H1,
so that H1 = (−N(u)) ∪ (−N(v)) and [H1] + (−N(u)) ∪ (−N(v)) = 0. This concludes the
proof in case λ = 0.

Let us suppose that λ 6= 0. Then 1, u and vu−1 − 2
λ

are mutually orthogonal.

Indeed, bq(1, u) = −Trd(uv−1u2u−1) = −Trd(uv−1u−1)
u2 = 0, as Trd(v) = 0. We have

bq(1, vu
−1− 2

λ
) = Trd(uv−1u(u−1v− 2

λ
)u−1) = Trd(1− 2

λ
uv−1) = 0. Further, bq(u, vu

−1−
2
λ
) = Trd(u2v−1u(u−1v − 2

λ
)u−1) = Trd(−N(u)u−1 + 2

λ
N(u)v−1) = 0.

We have q(1) = λ, q(u) = Trd(−u2v−1u) = N(u)λ, and

q(vu−1 −
2

λ
) = Trd[(vu−1 −

2

λ
)uv−1u(u−1v −

2

λ
)u−1)]

= Trd[(u−
2

λ
uv−1u)(u−1vu−1 −

2

λ
u−1)].

Hence q(vu−1 − 2
λ
) = Trd(vu−1 − 4

λ
+ 4

λ2uv
−1) = Trd(vu−1)− 4

λ
= λ

N(uv−1) −
4
λ
.

Since disc(q) = 1, we have

q ' λ < 1,N(u),
1

N(uv−1)
−

4

λ2
,N(u)(

1

N(uv−1)
−

4

λ2
) > .

We have to check that

(−N(u)) ∪ (−N(v)) + [H1] = (−N(u)) ∪ −(
1

N(uv−1)
−

4

λ2
).

Since u, v are trace zero elements, there exists a trace zero element w such that
1, u, w, uw is a quaternionic basis for H1, and v = au+ bw, [H1] = (−N(u)) ∪ (−N(w)).
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Hence we have :

(−N(u)) ∪ (−N(v)) + [H1] = (−N(u) ∪ (N(v)N(w)).

It suffices to show that N(v)N(w)( 4
λ2 −

1
N(uv−1) ) is a value of < 1,N(u) >.

We have N(v)N(w)( 4
λ2 −

1
N(uv−1) ) = (a2N(u) + b2N(w))N(w)( 4

Trd(uv−1)2 −
1

N(uv−1 )).

Note that

Trd(uv−1) =
Trd(vu−1)

N(vu−1)
=

2a

a2 + b2N(wu−1)
,

and

N(uv−1) =
1

N(vu−1)
=

1

a2 + b2N(wu−1)
.

We have

N(v)N(w)(
4

λ2
−

1

N(uv−1)
) = (a2N(u)+b2N(w))N(w)(a2+b2N(wu−1))[

a2 + b2N(wu−1)

a2
−1]

=
[a2N(u) + b2N(w)]2

N(u)2a2
N(w)2b2,

which is a square, hence a norm. Therefore we have e2(q) = (−N(u))∪ (−N(v)) + [H1], as
claimed.

5. 4–fold Pfister involutions

The aim of this section is to prove the following result :

Theorem 2. Let (D,σ) be a 4–fold Pfister involution. Let K be a splitting field of D,
and let q = qK be the quadratic form induced by σ over K. Then q is a Pfister form.

The proof will make use of the following lemmas :

Lemma 2. Let H1 and H2 be two quaternion algebras, and set D = H1⊗H2. Let τ be an

orthogonal involution with trivial discriminant on D, and let u ∈ D∗ with τ(u) = u. Then
the quadratic form q : D → F defined by q(x) = Trd(xuτ(x)) is in I3(F ).

Proof. By lemma 1, the involution τ⊗(Intuoτ) on D⊗D transports into σq on EndF (D).
Thus disc(q) = 1 and C0(q) ' C(D⊗D, τ ⊗ (Intuoτ)) is split (see for instance [2],p. 150).
This implies that C(q) is split and that q is in I3(F ).

Lemma 3. Let H1 and H2 be two quaternion algebras, and set D = H1⊗H2. Let τi be the
canonical involution on Hi, and set τ = τ1 ⊗ τ2. For any u ∈ D∗ such that Nrd(u) ∈ F ∗2,
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we define the quadratic form qu : D → F by qu(x) = Trd(xuτ(x)). Then qu is a Pfister

form.

Proof. It suffices to show that if qu is isotropic then it is split. Let us suppose qu isotropic.
By a general position argument, there exists y ∈ D∗ such that qu(y) = 0. The quadratic
forms qu and qyuτ(y) are isometric under the map D → D, x 7→ xy−1. Hence replacing u
by yuτ(y), we may assume that u has the additional properties Trd(u) = 0, τ(u) = u.

For x ∈ H1, we have τ(x) = x−1Nrd(x) so that qu(x) = Trd(xux−1Nrd(x)) =
Nrd(x)Trd(xux−1) = 0. Thus H1 is totally isotropic for qu : indeed, H1 is totally isotropic
for qz for any z ∈ D∗ with Trd(z) = 0, τ(z) = z.

The involution Int(u)oτ on D has trivial discriminant, hence D = H ′

1 ⊗ H ′

2 and
Int(u)oτ = τ ′1 ⊗ τ ′2, where τ

′

i denotes the canonical involution on H ′

i. Let j ∈ H ′

2 with
Trd(j) = 0 and let (H ′

1)
0 be the set of trace zero elements in H ′

1. Then W = (H ′

1)
0j is a

3–dimensional subspace of D elementwise fixed by Int(u)oτ such that for every y ∈W , we
have y2 ∈ F . Set T = {y ∈ D, Trd(uτy) = 0}. Then dim(T ) = 15 and dim(T ∩W ) ≥ 2.
Let Vj ⊂ T ∩W be a 2–dimensional subspace. Then for y ∈ Vj , we have Trd(uτ(y) = 0,
y2 ∈ F and Int(u)oτ(y) = y. This implies that uτ(y) = yu, hence τ(uτ(y) = yu = uτ(y),
i.e. uτ(y) is symmetric under τ . Since for y ∈ Vj we have y2 ∈ F , we have Trd(yuτ(y) =
Trd(y2u) = y2Trd(u) = 0. Thus Vj is totally isotropic for qu.

Further for y ∈ Vj , the element uτ(y) being symmetric for τ with trace zero, H1

is totally isotropic for quτ(y). Hence for x, z ∈ H1, we have Trd(xuτ(y)τ(z)) = 0. In
particular, setting z = 1, we get, for x ∈ H1, Trd(xuτ(y)) = 0. Hence H1 is orthogonal to
Vj with respect to qu.

Let i, j, k be a basis of trace zero elements in H ′

2 with i = jk, jk = −kj. Suppose
that Vj ⊂ H1. Then we have Vj ⊂ H0

1 . If Vk ⊂ H1, then we have Vj + Vk ⊂ H0
1 , and

Vj ∩ Vk = 0. Hence we get dim(Vj + Vk) = 4, contradicting dim(H0
1 ) = 3.

Thus there exists y ∈ Vj or Vk such that y 6∈ H1, y totally isotropic for qu and
Trd(xuτ(y)) = 0 for all x ∈ H1. Thus H1 ⊕ Fy is a 5–dimensional totally isotropic
subspace for qu. Therefore the anisotropic rank of qu is at most 6 and by Lemma 2, we
have qu ∈ I3(F ). Hence qu is hyperbolic.

Proof of theorem 2. Since (D,σ) is Pfister, we may write (D,σ) as

(D1, σ1)⊗ (D2, σ2)⊗ (D3, σ3)⊗ (D4, σ4),

where the Di’s are quaternion algebras and σi’s are orthogonal involutions. Using [1], we
may write (D1, σ1)⊗(D2, σ2) as (H1, τ1)⊗(H2, τ2), where the Hi’s are quaternion algebras
and the τi’s their canonical involutions. To prove the theorem, we may assume that D is
split.

Using [1] again, we may write (D3, σ3)⊗ (D4, σ4) = (H1⊗H2, Int(u
−1)o(τ1⊗τ2), with

u ∈ H1 ⊗H2 satisfying Nrd(u) ∈ F ∗2. By lemma 1, the form q associated to σ is given by
q(x) = Trd(xuτ1 ⊗ τ2(x)). By lemma 3, the form q is indeed a 4–fold Pfister form.
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